

Orbits Design for Exoplanet Missions

Trajectory & Mission Design

Martin Lo, JPL Chen-Wan Yen, JPL Ryan Russell, Georgia Tech Stefano Campagnola, USC

February 22, 2008

Agenda

Terrestrial Planet Finder Mission

TPF T

- Background
- Trajectory Options
- Assumptions
- Impulsive Case
- Low Thrust Case
- Conclusions
- Future Work
- References

Background

- TPF Occulter for Planet Finding
 - TRW Study: Starkman's Concept, Precursor Mission with JWST
 - Identified 2 Tall Tent Poles: Orbital Dynamics, Occulter Fabrication
- JPL Study Finds Orbital Dynamics Not a Problem
- JPL Mission Design and Navigation Expertise
 - Cutting Edge Mission Design & Navigation Technologies
 - Analysis and Design of All Type of Mission Scenarios and Orbits
 - Experience
 - End-to-End Service: Pre-Phase-A to Operations

Assumptions for Study

TwSej

Two Free Flying Spacecraft: Telescope & Occulter

• Separation 10,000 to 50,000 km

Observation Duration 24 Hours / Star

Orbits in Sun-Earth/Moon Restricted Three Body Problem

 $-\mu = 3.04042e - 06$

~JWST L₂ Lissajous Orbit (187,000 x 750,000 km Az, Ay Amplitudes)

Earth Leading Orbit

- Model Adequate to Size Propulsion & Show Feasibility

Monte Carlo Analysis Observing Random Stars

Simulations for Observing 40 Stars from TPF List

TPF

Observation Geometry Assumptions _____

Terrestrial Planet Finder Mission

- **Telescope Always Sun-Pointed**
 - Using JWST as Model (Gardner et al. 2006)
 - SKM (Station Keeping Maneuver) Every 22 Days
 - Area: 19.4 x 16.4 [m²]
- Occulter Always 90° to Sun-Occulter-Line
 - Area: 25 m Radius Circle (W. Case 2006)
 - Assume No SRP (not an issue)
- **Telescope FOV 15° from**
 - **Plane** ⊥ **Sun-Telescope** Line
- **Retargeting Angle:**

≤ 15° Case 1

= 15° Case 2

 $\leq 30^{\circ}$ Case 3

A NASA

Origins Mission

L₂ Orbits for Occulter & Telescope

Terrestrial Planet Finder Mission

TPH

A NASA

Origins Mission

Earth Leading Heliocentric Orbit

TPF

Mean Retargeting ΔV in Halo Orbit

TPH

ΔV Distribution for 1 Day Observation in Halo Orbit

Terrestrial Planet Finder Mission

A NASA Origins Mission

Occulter Observation ΔV [m/s] 50,000 km Separation

Halo Orbits Chemical ΔV More Expensive \blacksquare

- Observation ΔV 6 x More Expensive in L, Halo Orbit Than **Heliocentric Orbit**
- Repointing ΔV 2.6 x More Expensive in Halo Orbit
- **BUT Halo Orbit Mission Much Faster**
 - **Optimum Transfer Time: 30 to 40 Days in Heliocentric Orbit**
 - 10 to 15 Days in Halo Orbit

Observation ∆V (1 Day)	50,000 km Separation	25,000 km Separation	
L ₂ Orbit	1.2 m/s	0.6 m/s	
Helio. Orbit	0.2 m/s	0.1 m/s	
Repointing ∆V			
L ₂ Orbit	19 m/s	9.5 m/s	
Helio. Orbit	7.1 m/s	3.6 m/s	

Performance in Earth Leading Orbit

- Chem. Thrust: Chem Wet/Dry $\sim 0.9159 \pm .00013$
- Low Thrust: 1600 kg propulsion for 3000 kg dry S/C (Yen)
 - 10 Days Repointing, 440 Days for Observing 40 Stars
- Spacecraft Mass [kg]:

DRY (KG)	CHEM PROP	CHEM WET	SEP PROP	SEP WET	SEP - CHEM
1000	1092	2092	533	1533	-559
2000	2184	4184	1067	3067	-1117
3000	3275	6275	1600	4600	-1675
4000	4367	8367	2133	6133	-2234
5000	5459	10459	2667	7667	-2792

Conclusions

Terrestrial Planet Finder Mission

TPF

• TPFO with SEP Feasible in L₂ Halo Orbits

- Occulter Must Be Controlled During Observation
 - Uncontrolled Drift in 1 Day
 - ~ 0.1 km in heliocentric orbit
 - ~10 km in halo orbit
- TPFO with Impulsive ΔV Difficult to Achieve
 - ΔV Feasible for Heliocentric Orbits, Not for LARGE L₂ Halo Orbits
 - Duration Too Long for Heliocentric Orbits, OK for Halo Orbits
- Occulter with JWST
 - Suitable For Finding Jupiter Planets ($\leq 25,000$ km separation)
 - Not Suitable For Finding TERRESTRIAL Planets Due to Large ΔV Requirements (≥ 50,000 km separation)

TPFO Not Feasible with Solar Sails

On Going Work

- Performance Trade in Halo Orbit Still Remains
 - Need Low Thrust Mass Analysis
- Station Keeping Analysis Needed
- Travelling Planet Finder Problem
 - Optimize Observation & Propulsion with Constraints
 - Hard Multiobjective Optimization Problem
 - Stochastic Optimization Approach Need
 - e.g. Genetic Algorithm, Markov Chain Mor
 - Building Tools

Trajectory Study Team

Terrestrial Planet Finder Mission

TPF

- Martin Lo
- Chen-Wan Yen
- Ryan Russell
- Stefano Campangola (USC, Graduate Student)
- Acknowledgements
 - JPL Engineering Support: Fernando Tolivar
 - NGST Technical Discussions: Jon Arenberg, Amy Lo, Richard Malmstrom
 - JPL Supercomputer Project : Chris Cathersoo, Dirk Runge

References

Terrestrial Planet Finder Mission

HAH

- Cash, W., Detection of Earth-like planets around nearby stars using a petal-shaped occulter, Nature Vol 442, 6 July 2006.
- Vanderbei, R. et al., Circularly symmetric apodization via star-shaped masks, Astrophysics Journal, 599, 2003.
- Starkman, G., *Occulter*, TRW Space & Electronics Group, date?
- TRW TPF Architectural Phase 1 Study, Phase 2 Final Report, date?
- Ball Aerospace, TPF Architectural Study Final Report, March 29, 2002.
- Gardner, J., J. Mather, et al., *The James Webb Space Telescope*, Space Sciences Reviews (in press 2006)

L₂ Halo Orbit (Rotating Coord)

Terrestrial Planet Finder Mission

TPF

